Derivation of Dirac’s Equation from the Evans Wave Equation
نویسنده
چکیده
The Evans wave equation [1] of general relativity is expressed in spinor form, thus producing the Dirac equation in general relativity. The Dirac equation in special relativity is recovered in the limit of Euclidean or flat spacetime. By deriving the Dirac equation from the Evans equation it is demonstrated that the former originates in a novel metric compatibility condition, a geometrical constraint on the metric vector qμ used to define the Einstein metric tensor. Contrary to some claims by Ryder, it is shown that the Dirac equation cannot be deduced unequivocally from a Lorentz boost in special relativity. It is shown that the usually accepted method in Clifford algebra and special relativity of equating the outer product of two Pauli spinors to a three-vector in the Pauli basis leads to the paradoxical result X = Y = Z = 0. The method devised in this paper for deriving the Dirac equation from the Evans equation does not use this paradoxical result.
منابع مشابه
Dirac’s Equation in Different Numerical Rings and the Possible Association of Quaternions with ”Color”
These relationships cannot be fulfilled by scalars and thus, matrices are used. By choosing, C, to create the elements of the required matrices, at least 4x4 matrices are needed to achieve the required commutation properties (5) so the wave function had four components. At the time of Dirac’s derivation Pauli had discovered a phenomenological theory, involving 2x2 matrices defined as the Pauli ...
متن کاملComplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملDirac's equation and the nature of quantum field theory
This paper re-examines the key aspects of Dirac’s derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac’s derivation, the paper argues, follows the key principles behind Heisenberg’s discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics v...
متن کاملDerivation of reduced two-dimensional fluid models via Dirac’s theory of constrained Hamiltonian systems
We present a Hamiltonian derivation of a class of reduced plasma two-dimensional fluid models, an example being the Charney–Hasegawa–Mima equation. These models are obtained from the same parent Hamiltonian model, which consists of the ion momentum equation coupled to the continuity equation, by imposing dynamical constraints. It is shown that the Poisson bracket associated with these reduced m...
متن کاملDerivation of Equation of Motion for the Pillow-Shape Seismic Base Isolation System
Rolling-based seismic isolation systems, in which rollers of circular or non-circular section are used, are less expensive and easier to manufacture. However, this type of isolation suffers from either lack of restoring or re-centering capability, or weakness against uplift forces. To resolve the first shortcoming the use of elliptical as well as pillow-shape rolling parts has been suggested, a...
متن کامل